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Thermophysical properties of cubic elements * 

J. Mimkes *, M. Liibbers, H.H. Thomas 

FB Physik, University of Paderborn, 33098 Paderborn, Germany 

Abstract 

The Griineisen-Debye equation of state (EOS) is presented for cubic solids. The 
Helmholtz free energy F( T, V) is obtained from the second integral of the Griineisen relation. 
F(T, V) is determined by six constants: molar volume V,, cohesive energy a,, Debye 
temperature 00, Griineisen parameter F, exponent 6 and constant of electronic contribution 
to specific heat y’. 

Thermophysical and high pressure properties, such as functions of temperature T, volume 
V or pressure p, have been calculated for cubic elements. Volume V(T), V(p), heat capacity 
C,,(T), volume expansivity M,(T), bulk modulus K,(T), K,(p) and the pressure coefficient 
Kb = I- + S + 2 show excellent agreement for the alkali metals Li, Na and K, the transition 
metals Cu, Ag, Au, Ni and Fe, the main group metals Al and Pb, and solid rare gas crystals 
Ne, Ar, Kr and Xe. 

Keywords: Alkali metal; Cubic element; Kinetics; Pressure; Rare gas; Thermodynamics; 
Transition metal 

1. Introduction 

In 1912 Griineisen [ l] and Debye [2] published their equations of state (EOS) in 
the same issue of Annalen der Physik. These EOS [ l-101 are presently of interest 
in the calculation of high pressure data such as the pressure coefficient Ke of bulk 
modulus for cubic elements. We shall show that the pressure coefficient Kb of the 
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bulk modulus for cubic elements may be derived from a modified Griineisen EOS 
in good agreement with experimental data for alkali metals, transition metals and 
rare gas solids. 

The basic idea of the present paper is to expand the modified Grtineisen EOS 
[ 1,l l] for simple cubic elements by the Debye model [ 21 and restrict the validity of 
the model to the temperature range in which the Debye temperature is nearly 
constant. In the first section we shall calculate the Helmholtz free energy F(T,V) 
and its derivatives for the Griineisen-Debye model. In the following section we 
shall compare the results with experimental data and finally we shall discuss the 
Griineisen function G(V) in more detail. 

2. Calculation of thermophysical properties 

The Griineisen-Debye EOS of cubic elements may be obtained by a twofold 
integration of the Griineisen relation 

-a*F/dVaT = gpKr = I-CO/V (1) 

F( V, T) is the Helmholtz free energy, aP the volume expansivity, K, the isothermal 
bulk modulus, V the molar volume, C, the molar heat capacity at constant volume 
and r the mean Griineisen parameter for the three acoustic branches of cubic 
elements. 

2.1. The first integral of the Griineisen relation 

If the first integral is carried out with respect to T at constant V, the mean 
Griineisen parameter r has to be known as function of temperature T. The function 

UT) = ~,(WMW’(WC,(T) (2) 

may be obtained from data in the literature [ 14-171. Fig. 1 shows for aluminum 
that r is constant in the temperature range O-600 K. For solid xenon r is constant 

0 200 LOO 600 0 20 LO 60 80 100 

Temperature in K Temperature in K 

Fig. 1 (left). r values for Al. Solid line according to Eq. (2); data from authors of Figs. 7, 9, 11 and 13. 

Fig. 2 (right). r values for Xe. Solid line according to Eq. (2); data from authors of Figs. 8, 10, 12 and 14. 
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in the temperature range 30-100 K, and drops by 10% below 30 K, as shown in 
Fig. 2. 

Accordingly, for Al and Xe the Griineisen relation (1) may be integrated with 
respect to T at constant V. 

AT, V) V = W(T, V) + G( VI (3) 

Eq. (3) is the EOS by Griineisen [ 11; G(V) is an integration constant. 
In first order the Griineisen function G(V) has been represented by a simple 

power function [ 1 I], as will be discussed later. 

G(V) = M’,/Vs (4) 

The exponent 6 may be calculated as follows: for p = 0 the Griineisen relation (3) 
implies E(T) = - G( V(T)). The molar heat capacity C’ at p = 0 

C,(T) = -(c?G/W)(W/W),=, 

= WV0/V(m6~p (5) 

leads to an implicit function for the exponent 6. We may solve for 6 as a function 
of molar heat capacity C, at constant pressure, volume expansion coefficient aP and 
cohesive energy E, 

6(T) = [C, /~pl/C% - qJ Tl (6) 
Fig. 3 shows for aluminum that 6 calculated according to Eq. (6) from the 

literature [ 12-171 is indeed constant in the temperature range O-600 K. The same 
holds for Xe in Fig. 4 in the range 30- 100 K; below 30 K the value of 6 increases 
by 10%. 

2.2. The second integral of the Griineisen relation 

The second integral of the Griineisen relation (1) has to be carried out with 
respect to volume at constant temperature. At T = 0, with F(V) = E(V) the 

2.0 I , I , L.0 I I I I 
Al Xe 

1.5 - 3.5 - 

2 . . . . - . * 1.0 -- 2 3.0 - 0.. l 2 $ . . . . . . . 

0.5 - 2.5 - 

0 I 1 I I I 2.0 ’ I I I I I _ 
0 200 LOO 600 0 20 LO 60 80 100 

Temperature in K Temperature in K 

Fig. 3 (left). d values for Al. Solid line according to Eq. (6); data from authors of Figs. 9 and 11. 

Fig. 4 (right). 6 values for Xe. Solid line according to Eq. (6); data from authors of Figs. 10 and 12. 
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Griineisen EOS (3) equals [ 1 l] 

- (%‘( Q/a I’), Y = I-[F( I’) + G( I’)] (7) 

This is an inhomogeneous differential equation for the Helmholtz free energy F(V). 
It is solved by variation of the constant of the homogeneous solution. The result is 
given by the homogeneous solution and a particular solution depending on G( I’) 

[Ill 

At T = 0 the Helmholtz free energy is given by the I - 6 potential similar to the 
m - n potential proposed by Griineisen [ 11. At T = p = 0 the free Helmholtz energy 
is equal to the (negative) cohesive energy E,. 

2.3. Helmholtz free energy F(T,V) 

We may now calculate the Helmholtz free energy F(T, V) and all thermophysical 
properties of cubic elements by taking into account the specific heat of phonons 
(and of electrons in metals). 

With the models of Griineisen, Debye and Sommerfeld [ 12, lo] we obtain the 
Helmholtz free energy F(T, V) of cubic elements 

F(T,V) = 3RT ln[ 1 - exp( -o/T)] - RTDl(O/T) 

+E,[G(V,/V)r-r(V,/V)6]/(r-_) -0.5y’(v/v&-T2 (9) 

where 

(10) 

and 

y’ = 0.5R2rr2/s F (11) 

0 = @,,( If’,/ V)’ is the Debye temperature and &F is the Fermi energy. Six constants 
are necessary to calculate the Helmholtz free energy as a function of temperature T 
and volume V: ( 1) zero pressure volume I’,, = V(T = p = 0); (2) cohesive energy 

specific heat constant 
exponent 6 = [C, /&,I / 

” _ 
E, = E(T = V = 0); (3) Debye constant 0,; (4) electronic 
y ’ =O;;;“2/+; (5) G . . runeisen constant I = cl* KT V/C, ; (6) 

EC 
For Peach cubic element a set of six constants will be 

all thermophysical properties as functions of temperature T, 

P. 

sufficient to calculate 
volume V, or pressure 
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2.4. Energy E( T,V) 

The energy E(T,V) of this Griineisen-Debye model is given by 

E(T,I/) = 3RTD,(O/T) + OSy’(V/I/,)‘T2 

+ aJ&1/6/W - u~o/m/(r - 4 (12) 

At constant volume we obtain the energy according to Debye and Sommerfeld 

P,101. 

2.5. Entropy S(T,V) 

The entropy of the Griineisen-Debye model is S(T,V) = -(aF/dT), 

S(T,V) = -3R ln[l -exp(-O/T)] +4RD,(O/T) +y’(V/VJrT (13) 

The functions for D, and y’ are given in Eqs. (10) and (11). 

2.6. Pressure p( T,V) 

The pressure is obtained from p(T, V) = - (iTF/BV),. Calculated results accord- 
ing to 

p(T,V) = {3RTD,(O/T) +0.5y’(V/VJrT2 

+ %wVO/vr - (~o/v”l/u- - w/v (14) 

and experimental data [ 15,161 for aluminum and xenon are given in Figs. 5 and 
6. 

2 - 

9.3 9.5 9.7 9.9 27 29 31 33 

Volume in cm3/mol Volume in cm3/mol 

Fig. 5 (left). p(V) for Al. Solid line according to Eq. (14); data from P.W. Bridgman (1948) in Ref. 16. 

05 - 

Fig. 6 (right). p(V) for Xe. Solid line according to Eq. (14); data from MS. Anderson and C.A. 
Swenson (1975) in Ref. 15. 
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2.7. Volume V(T,p) 

Eq. (14) may also be regarded as an implicit function for V(T,p). For application 
to cubic elements we will use Eq. (14) especially for constant temperature (T = 0) 
in order to calculate V(p), or at constant pressure (p = 0) for the calculation of 
V(T). Results of the calculations and experimental data [ 15,171 are given for Al and 
Xe in Figs. 7 and 8. 

‘ti 1O.L 
E 

> 
6 10.2 

.E 

gy 10.0 

2 
98 I I I 

100 300 500 700 0 50 100 150 

Temperature in K Temperature in K 

Fig. 7 (left). V(T) for Al. Solid line according to Eqs. (14) -( 16) at p = 0; data from G.N. Kamm and 
G.A. Alers (1964) in Ref. 17, p. 6, and D. Gerlich and ES. Fisher (1969) in Ref. 17, p. 7. 

Fig. 8 (right). V(T) for Xe. Solid line according to Eqs. (15) and (16) at p = 0; data from D.R. Sears 
and H.P. Klug (1962) in Ref. 15. 

2.8. Volume expansivity cxP( T) 

The relations for heat capacity [ 121 C, = C, + tx,*K,TV = C,( 1 + Ta,T) and 
C, = 6a,( V,/ V(T))%, (Eq. (5)) may be solved for the coefficient of volume expan- 

5 80 
- 

0 200 LOO 600 

Temperature in K 

I 1 I I 

- Y 80 

25 50 75 

Temperature in K 

Fig. 9 (left). a,(T) for AI. Solid line according to Eqs. (15) and (16); data from F.G. Awad and D. 
Gugan (1971) in Ref. 14, Vol. (12) 1, p. 12, D.B. Fraser and AC. Hollis-Hallett (1961) in Ref. 14, Vol. 
(12)1, p. 12, and K. Honda and Y. Okubo (1924) in Ref. 14, Vol. (12)1, p. 12. 

Fig. 10 (right). a,(T) for Xe. Solid line according to Eqs. (15) and (16); data from C.R. Tilford and 
CA. Swenson (1972) in Ref. 14, Vol. 13(l), p. 174. 
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sivity ~p. With V(T) = Vo(1 + apT), we obtain 

(3ROo (O/T) + 7' T) (15) 
~p(T) = [6e¢ - (F + fi)(3RDo(®/T) + 7'T)T] 

3 ~O/T x4e x dx (16) 
Do = Jo 

In Eqs. (15) and (16) we have used the relation for Debye functions 
4Dl(X) = Do(x)+ 3x/(e x -  1), which may be obtained by partial integration. The 
results of calculations for AI and Xe with the same parameters (see Table 1) as in 
the figures above are compared with experimental data [14] in Figs. 9 and 10. 

2.9. Molar heat capacity C p ( T )  

Molar heat capacity Cp may be calculated from Cp = Co(1 + F% T) 

Cp(T) = [3RDo(®/T) + 7'T][1 + FCtp(T)T] (17) 

with ap and Do given by Eqs. (15) and (16), respectively. The calculated values for 
AI and Xe are compared with experimental data [14,15] in Figs. 11 and 12. 

30 
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Fig. 11 (left). Cp(T) for AI. Solid line according to Eq. (17); data from J.A. Kok and W.H. Keesom 
(1937) in Ref. 14, Vol. 4, p. 3, W.F. Giaugue and P.F. Meads (1941) in Ref. 14, Vol. 4, p. 3, H. M/ider 
(1951) in Ref. 14, Vol. 4, p. 3 and T.E. Pochapsky (1953) in Ref. 14, Vol. 4, p. 3. 

Fig. 12 (right). Cp(T) for Xe. Solid line according to Eq. (17); data from H. Fenichel and B. Serin 
(1966) in Ref. 15, p. 783 and J.U. Trefny and B. Serin (1969) in Ref. 15, p. 783. 

2.10. Bulk modulus KT(T) 

The bulk modulus Kr(T) is determined by the Griineisen relation (1) as 

Kr(T) = FCo(T)/(~zp(T) V) (18) 

Calculated results and experimental data [15,17] are given in Figs. 13 and 14. 
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Fig. 13 (left). K,(T) for Al. Solid line according to Eq. (18); data from G.N. Kamm and G.A. Alers 

(1964) in Ref. 17, p. 6 and D. Gerlich and E.S. Fisher (1969) in Ref. 17, p. 7. 

Fig. 14 (right). K,(T) for Xe. Solid line according to Eq. (18); data from MS. Anderson and C.A. 

Swenson (1975) in Ref. 15, p. 813. 

2. Il. Pressure coeficient G of bulk modulus 

With compressibility /? = /I( T,p) and KT = l/p, the bulk modulus KT( T, V) may 
also be regarded as a function of pressure, K,(p) = K,(V(/(p)) = - V(@/6V),. We 
obtain KT = (LX/&),=, = (X/6V),(61//6p), = -{6[1/(6p/6V).]/6~‘)./(6p/6V),. 
With p(V) at T = 0 according to Eq. (14) we find for the limit of zero pressure 

&J=r+-6+2 (19) 

Calculated values and experimental data [ 12- 171 are given in Figs. 15 and 16. 
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Fig. 15 (left). r + 6 + 2 of Al. Solid line according to Eq. (19); solid circles are thermophysical data 

from authors of Figs. 7, 9, 11 and 13; solid square for high pressure data from Ref. 18. 

Fig. 16 (right). r + 6 + 2 of Xe. Solid line according to Eq. (19); solid circles are thermophysical data 

from authors of Figs. 8, 10, 12 and 14; solid square for high pressure data from Ref. 19. 
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3. Thermophysical data for cubic elements 

The good results for Al and Xe show that calculations of thermophysical and 
high pressure properties are in good agreement with experimental data. Further 
calculations of volume V(/(T), V(p), heat capacity C,(T), volume expansivity a,(T), 
bulk modulus K,(T), K,(p), pressure coefficient K;(T), T(T) and 6(T) have been 
compared to experimental data for 18 cubic elements: the alkali metals Li, Na, K, 
Rb and Cs, the transition metals Cu, Ag, Au, Ni, Fe, Nb and Ta, the main group 
metals Al and Pb, and solid rare gas crystals Ne, Ar, Kr and Xe. 

Table 1 shows for 18 cubic elements the set of six parameters which have been 
used to calculate all thermophysical properties as functions of temperature T, 
volume V of pressure p, zero pressure volume V, [ 12,171, cohesive energy E, [ 121, 
Debye constant OO [ 12,131 and electronic specific heat constant y ’ [ 121. 

The mean Griineisen constant r and the exponent 6 have been recalculated in a 
wide temperature range according to r = a$, V/C, and 6 = [C, /E,]/[E, - C, T] and 
may differ from the literature values given in Ref. Il. 

The range of validity according to Figs. 17, 18, 25, 26, 33 and 34 below is given 
by the range of temperature in which r and 6 are constant. 

3.1. Alkali metals 

For sodium the calculations and data [ 14,16- 181 of r and 6 as a function of 
temperature, pressure p( V), volume V(T), volume expansivity a,(T), heat capacity 
C_(T), bulk modulus K,(T), pressure coefficient Kb and r + 6 + 2 are shown in 
Figs. 17-24. The data [ 14,16-181 fit well except for a,(T) at low temperatures. 
However, a change in constants for Na, e.g. in 0, would alter the plot for C,(T), 
where more data are available. 

2.0 . I I 1 , I 
Na 20 - Na 

1.5 - 

E . 0 1.5 - 00 
g 1.0 - . 3 

0 $ 

0. 0 

1.0 - 
05 - 

0.5 - 
0 I I I I I 

50 150 250 100 200 300 

Temperature in K Temperature in K 

Fig. 17 (left). r values for Na. Solid line according to Eq. (2); solid circles are thermophysical data from 
authors of Figs. 20-23. 

Fig. 18 (right). 6 values for Na. Solid line according to Eq. (6); solid circles are thermophysical data 
from authors of Figs. 21 and 22. 
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14 16 18 20 22 2L 

23.L - 

Volume in cm3/mol Temperature in K 

Fig. 19 (left). p(V) for Na. Solid line according to Eq. (14); data from P.W. Bridgman (1948) in 

Ref. 16, p. 4-42. 

Fig. 20 (right). V(T) for Na. Solid line according to Eqs. (14)-( 16) at p = 0; data from M.E. Diederich 

and J. Trivisonno (1966) in Ref, 17, p. 90, KS. Alexandrow and T.V. Ryshova (1961) in Ref. 17, p. 90 

and R.F.S. Hearmon (1946) in Ref. 17, p. 91. 

25 

2 20 

.c- 
r 15 
0 
- 

x 10 

: 
a 5 

d 
0 0 

100 200 300 

Temperature in K 

0 100 200 300 LOO 

Temperature in K 

Fig. 21 (left). g(T) for Na. Solid line according to Eqs. (15) and (16); data from R.K. Kirby, Th.A. 

Hahn and B.D. Rothrock in Ref. 16, p. 4-130. 

Fig. 22 (right). C,,(T) for Na. Solid line according to Eq. (17); data from L.M. Roberts (1957) in Ref. 

14, Vol. 4, p. 216, D.L. Martin (1960) in Ref. 14, Vol. 4, p. 216 and D.C. Ginnings, T.B. Douglas and 

A.F. Ball (1950) in Ref. 14, Vol. 4, p. 216. 

Similar results have been obtained for lithium and potassium with good agreement 
between calculations and data [ 14,16- 181. For rubidium and cesium the experimental 
data were not sufficient for a reliable calculation of I and 6. 

In alkali metals we find 6 > I. We have to consider 6 as the exponent of the repulsive 
potential and I the exponent of the attractive potential. 

The value of I is 0.86 for Li, 1.16 for Na and 1.38 for K; for 6 we have obtained 1.20, 
1.36 and 1.38, respectively. The sums of I + 6 + 2 agree well with data for the pressure 
coefficient of bulk modulus Kb from high pressure experiments, as given in Table 1. 

Comparing the EOS of the literature [ l-101 only the Birch equation [9], which is 
generally used for metals, agrees with the data of alkali metals: m/3 = 5/3 is 
somewhat larger than the observed values of I = 0.86 to 1.38, the second exponent 
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Fig. 23 (left). K,(T) for Na. Solid line according to Eq. (18); data from M.E. Diederich and J. 

Trivisonno (1966) in Ref. 17, p. 90 and R.F.S. Hearmon (1946) in Ref. 17, p. 91.. 

Fig. 24 (right). f + 6 + 2 of Na. Solid line according to Eq. (19); solid circles are thermophysical data 

from authors of Figs. 20-23. 

n/3 = 413 is close to 6 = 1.35 of the present model. The sum m/3 + n/3 + 2 = 4 
agrees well with the observed values of Kb between 3.5 and 4.2. Other models (e.g. 
those of Slater [4] and Bardeen [6]) lead to much smaller values for Kb; but that 
of Lennard-Jones and Ingham [ 31 leads to larger values for Kb. 

3.2. Transition metals 

Figs. 25-32 show the calculations and data [ 14,16,17] for copper: I and 6 as a 
function of temperature, pressure p(V), volume V(T), volume expansivity czP( T), 
heat capacity C,(T) and bulk modulus K,(T). The agreement is good with data in 
all plots. Similar results have been obtained [ 14,16-191 for silver, gold and nickel. 
For palladium, platinum, iron, niobium and tantalum the calculations do not 
always agree with the data [ 14,16- 181. 

3.0 1 , , , 1 , , 2.5 

cu 

2.5 - 2.0 

E . 2.0 -.--.- . . . . 0 z E 1.5 

s 
0” 

1.5 - 10 

10 ’ ’ ’ ’ ’ ’ ’ 
100 300 500 700 

Temperature in K 

0.5 
200 600 1000 

Temperature in K 

Fig. 25 (left). r values for Cu. Solid line according to Eq. (2); solid circles for thermophysical data from 

authors of Figs. 29-31. 

Fig. 26 (right). 6 values of Cu. Solid line according to Eq. (6); solid circles for thermophysical data from 

authors of Figs. 29 and 30. 
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Fig. 27 (left). p(V) for Cu. Solid line according to Eq. (14); data from P.W. Bridgman (1949) in Ref. 

16, p. 4-41. 

Fig. 28 (right). V(T) for Cu. Solid line according to Eqs. (14)-( 16) at p = 0; data from W.C. Overton 

and J. Gaffney (1955) in Ref. 17, p. 23 and Y.A. Chang and L. Himmel (1966) in Ref. 17, p. 24. 

Figs. 33-40 show the calculations and data [ 14,16- 181 for iron: r and 6 as a 
function of temperature, volume V(T), volume expansivity a,(T), heat capacity 
C,(T), bulk modulus &(T) and K,(p). 

The data of 6(T), or,(T) and C,(T) in Figs. 34, 36 and 37 reflect the b.c.c. to f.c.c. 
phase transition at 1158 K, which is not incorporated into the calculations. Similar 
results are found for Ni, where a magnetic phase transition is observed. 

For niobium and tantalum the calculated values of r and 6 have about the same 
value. This leads to a logarithmic potential in Eq. (8), and the pressure coefficient 
of bulk modulus given by Kb = (r + 1)*/r agrees with the data. However, the specific 
heat plots do not agree very well with the experimental data [ 141 for Nb and Ta. 

80 I I I I , I 

0 250 500 750 1000 1250 0 250 500 750 1000 1250 

Temperature in K Temperature in K 

Fig. 29 (left). or,,(T) for Cu. Solid line according to Eqs. (15) and (16); data from K.O. McLean, C.A. 

Swenson and C.R. Case (1972) in Ref. 14, Vol. 12(l), p. 90, F.C. Awad and D. Gugan (1971) in Ref. 

14, Vol. 12(l), p. 91, G.V. Bunton and S. Weintraub (1968) in Ref. 14, Vol. 12(l), p. 89, J.E. Leksina 

and S.J. Novikova (1963) in Ref. 14, Vol. 12(l), p. 90 and P.D. Pathak and N.G. Vasavada (1970) in 
Ref. 14, Vol. 12(l), p. 89. 

Fig. 30 (right). C,,(T) for Cu. Solid line according to Eq. (17); data from J.P. Franck, F.D. Manchester 

and D.L. Martin (1961) in Ref. 14, Vol. 4, p. 55, T.A. Sandenaw (1959) in Ref. 14, Vol. 4, p. 55, D.L. 

Martin (1960) in Ref. 14, Vol. 4, p. 55 and V.E. Lyusternik (1959) in Ref. 14, Vol. 4, p. 55. 
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Fig. 31 (left). K,(T) for Cu. Solid line according to Eq. (18); data from W.C. Overton and J. Gaffney 

(1955) in Ref. 17, p. 23 and Y.A. Chang and L. Himmel (1966) in Ref. 17, p. 24. 

Fig. 32 (right). f + 6 + 2 for Cu. Solid line according to Eq. (19); solid circles for thermophysical data 

from authors of Figs. 28-31; solid square for high pressure data from Ref. 18. 
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Fig. 33 (left). r values for Fe. Solid line according to Eq. (2); solid circles for thermophysical data from 
authors of Figs. 35-38. 

Fig. 34 (right). 6 values for Fe. Solid line according to Eq. (6); solid circles for thermophysical data 
from authors of Figs. 36 and 37. 

For transition metals we find E > 6. The value of the exponent 6 of the attractive 
part of the potential is nearly equal to 5/3 for all transition metals. The value of E 
of the repulsive potential varies between 2 and 3 for the f.c.c. transition metals, and 
is close to 5/3 for the b.c.c. transition metals. The sums E + 6 + 2 agree well with 
Kb for high pressure data [ 181 in Table 1. 

The Birch model [9] with m/3 + n/3 + 2 = 4 is again suited to the b.c.c. transition 
metals with Kb close to 4, but it cannot be applied to f.c.c. transition metals where 
the predicted values for E, 6 and Kb are much smaller than the experimental values. 
No other EOS [l-8] can be applied to transition metals. 
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Fig. 35 (left). V(T) for Fe. Solid line according to Eqs. (14)-( 16) at p = 0; data from J.A. Rayne (1961) 
in Ref. 17, p. 34, M.W. Guinan and D.N. Beshers ( 1968) in Ref. 17, p. 35 and J. Leese and A.E. Lord, 
Jr. (1968) in Ref. 17, p. 35. 

Fig. 36 (right). ap( T) for Fe. Solid line according to Eqs. (15) and (16); recommended data from Ref. 
14, Vol. 12(l), p. 157. 
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Fig. 37 (left). C,(T) for Fe. Solid line according to Eq. (17); data from G. Duyckaerts (1939) in Ref. 
14, Vol. 4, p. 106, A. v. Eucken and H. Werth (1930) in Ref. 14, Vol. 4, p. 106, K.K. Kelley (1943) in 
Ref. 14, Vol. 4, p. 105, D.L. McElroy (1957) in Ref. 14, Vol. 4, p. 105 and P.D. Anderson and R. 
Hultgren (1962) in Ref. 14, Vol. 4, p. 106. 

Fig. 38 (right). K(T) for Fe. Solid line according to Eq. (19); data from J.A. Rayne (1961) in Ref. 17, 
M.W. Guinan and D.N. Beshers (1968) in Ref. 17 and J. Leese and A.E. Lord, Jr. (1968) in Ref. 17. 

3.3. Main group metals: Al and Pb 

The results for aluminum have been presented in Figs. 3, 5, 7, 9, 11, 13 and 15. 
Similar results have been found for lead. The constants for lead are listed in Table 1. 

Aluminum and lead are f.c.c. metals and have r > 6. The values of r are between 
2 and 3 and larger than predicted by the Birch model [9]; the value of 6 for lead is 
equal to 5/3, as for f.c.c. transition metals. Only 6 for Al is as small as in alkali 
metals (6 = 4/3). Again the sums of r + 6 + 2 agree with high pressure data for the 
pressure coefficient of bulk modulus Kb in Table 1, and are closer to the value of 
Kb = 4, as predicted by Birch. 
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Fig. 39 (left). K,(p) for Fe. Solid line according to Eqs. (18) and (19); data from M.W. Guinan and 

D.N. Beshers (1968) in Ref. 17, p. 35. 

Fig. 40 (right). r + 6 + 2 for Fe. Solid line according to Eq. (19); solid circles for thermophysical data 

from authors of Figs. 35-38; solid square for high pressure data from Ref. 18. 

3.4. Rare gas crystals 

The calculations for xenon have been presented in Figs. 2, 4, 6, 8, 10, 12, 14 and 
16. Similar results [ 14,151 have been found for neon, argon and krypton. The 
constants of the calculations are listed in Table 1. 

All rare gas crystals show about the same values for I and for 6. For alkali 
metals we find 6 > I, where 6 is the exponent of the repulsive part and I is the 
exponent of the attractive potential. We find 6 = 913 and I = 813. The sums of 
I + 6 + 2 are constant and agree well with the high pressure data for the pressure 
coefficient of bulk modulus Kb in Table 1 for Ar and Xe, which are in the same 
range. For Ne and Kr the calculated results and experimental [ 51 high pressure data 
for Kb differ by only 20%. 

The Lennard-Jones and Ingham [3] potential with m/3 = 12/3 = 4 and n/3 = 
6/3 = 2 due to dipole-dipole interactions and m/3 + n/3 + 2 = 8 is very close to the 
observed values for I, 6 and Kb in rare gas crystals. No other equations, including 
the Birch EOS, can be applied. 

4. Discussion 

The results for the calculations of thermophysical properties show that the first 
order Griineisen function G(V) (Eq. (4)) leads to a self-consistent model with good 
agreement for most of the data for the 18 cubic elements. We now have to discuss 
the Griineisen function G(V) and the exponents I and 6 in terms of the experimen- 
tal results in Table 1 in more detail. 

Table 1 shows the crystal structure, the exponents I and 6, with the sum 
r + 6 + 2 compared to Kb for 18 elements. 
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4.1. Exponent of repulsive potential 

For each element in Table 1 the larger exponent (I- or S) belongs to the repulsive 

part of the potential. We find the exponent of the repulsive potential to depend on 
the crystal structure. For f.c.c. crystals this exponent is about 9/3 to 6/3. For b.c.c. 
crystals the value is between 4/3 and 5/3. This result seems plausible, since the f.c.c. 
lattice is packed more densely than the b.c.c. lattice, and the repulsive exponent 

should be higher the closer the lattice is packed. 

4.2. Exponent of attractive potential 

The exponent of the attractive part of the potential is given by the smaller value 
of r and 6 in Table 1. This exponent does not depend on crystal structure, but on 
the group to which the element belongs. For alkali metals we find 0.86 to 1.38, but 
for Al 1.1. For all transition metals and for lead the smaller exponent is about 5/3. 
Rare gas crystals with 6 > r show uniquely 8/3 for the smaller exponent. 

4.3. Pressure coeficient of bulk modulus Kb 

In contrast to the models of the literature [ l-101 the present model is able to 
determine the exponents 6 and r for all cubic elements. By m/3 = r and n/3 = 6 the 
exponents are related to experimental data which, unlike in the Birch EOS [9], may 
change with the elements. In addition we obtain a reasonable value for the pressure 
coefficient of the bulk modulus Kb, which compares well with the data. 

4.4, The Griineisen function 

In order to discuss the exponent of the attractive potential we have to look back 
at the Griineisen function. 

(a) At equilibrium or p = 0 the Griineisen EOS (3) yields G(V) = -E. The 
Griineisen function G(V) is equal to the (negative) total energy E or the cohesive 
energy of the crystal. This leads to G(V) = E, at T = 0. 

(b) However, at equilibrium the total energy according to the virial theorem 
[ 1,2,4] is equal to the negative kinetic energy, E = -Ekin, or G = -E = Ekin. If we 
assume the virial law to be valid for metals, the Griineisen function G(V) will be 
given by the kinetic energy E(k) of electrons, which is the sum of even powers of 

momentum k 

G(V) = Ekin(k) = c a2,k2” n=l,2,... (20) 

The maximum of momentum k,,, of electrons is proportional [ 121 to (l/V) 1’3. In 
normalizing Eq. (20) by the energy of cohesion E, we obtain 

G(V) =E,-&#‘~/V)~~‘~ n=l,2,... (21) 

with I/ = V(T). In general Eq. (21) will replace Eq. (4). 
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The exponent 6 may be calculated from molar heat by differentiating the total 
energy with respect to T, C,(T) = (t3E/i?V)(c?V/dT). With E = - G( V(T)) in Eq. 
(21) we find 

(22) 
and similarly to Eqs. (5) -(7) 

6 = 1(2n/3)~,,(&/V)~“‘~ n=l,2,... (23) 

with X c2” = 1. The exponent 6 is the mean value of a sum of exponents 2n/3 with 
a weight factor c2,,. 

For n = 1 we obtain the free electron band structure and 6 = 2/3. This exponent 
has been used for a free electron EOS by Slater [4] and Bardeen [6], and turns out 
too small in the calculation of thermal properties. 

For n = 2 we have a non-quadratic band structure. In alkali metals and alu- 
minum we have I < 6 as the attractive exponent; the experimental results with 
I = 0.86 to 1.38 indicate a summation up to n = 2. 

For n = 3 we obtain terms with the sixth power of k in the band structure. 
Transition metals and lead almost uniquely show 6 = 5/3, which is equivalent to a 
summation up to n = 3. 

In order to compare these results with band structure calculations for metals [20] 
we have to look for the curvature of the energy band E(k) at the Fermi surface. 
This energy level is mainly affected by a change in temperature and pressure. 
Calculations of E(k) for alkali, noble and other f.c.c. transition metals [20] indicate 
a value higher than n = 1 of the free electron solution. However, it is difficult to 
extract the exact exponent from the tabulation of Slater-Koster parameters [20]. 

Calculations of E(k) for b.c.c. transition metals [20] show that generally more 
than one branch of E(k) crosses the Fermi level. This may explain why b.c.c. 
transition metals are not so well represented by the first order Grtineisen function 
G(V) in Eq. (7). 

Rare gas crystals show 6 > I; the exponent of the attractive potential is close to 
8/3. This corresponds to a summation up to n = 4 or 5. However, in contrast to 
metals we have to assume dipole-dipole interactions for the insulating rare gas 
crystals to account for the high exponent in these solids. 

We may conclude that the Gruneisen EOS (Eq. (3)) and the first order Griineisen 
approximation (Eq. (7)) may well be applied to most calculations of thermophysi- 
cal properties of cubic elements. The Grtineisen function G(V) appears to represent 
the cohesive energy of the crystal. 
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